#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <fcntl.h>
#define MP_ALIGNMENT 32 //对齐信息
#define MP_PAGE_SIZE 4096 //单次分配大块大小
#define MP_MAX_ALLOC_FROM_POOL (MP_PAGE_SIZE-1)
#define mp_align(n, alignment) (((n)+(alignment-1)) & ~(alignment-1))
#define mp_align_ptr(p, alignment) (void *)((((size_t)p)+(alignment-1)) & ~(alignment-1))
struct mp_large_s {
struct mp_large_s *next;
void *alloc;
}; // 当单次分配超过pagesize时就需要一次分配然后归入large的一个链表中保存
struct mp_node_s {
unsigned char *last;
unsigned char *end;
struct mp_node_s *next;
size_t failed;
};// 页,用于小块的分配,last指向页内使用到的位置
struct mp_pool_s {
size_t max;
struct mp_node_s *current;
struct mp_large_s *large;
struct mp_node_s head[0];
}; //内存池
struct mp_pool_s *mp_create_pool(size_t size);
void mp_destory_pool(struct mp_pool_s *pool);
void *mp_alloc(struct mp_pool_s *pool, size_t size);
void *mp_nalloc(struct mp_pool_s *pool, size_t size);
void *mp_calloc(struct mp_pool_s *pool, size_t size);
void mp_free(struct mp_pool_s *pool, void *p);
//首先需要明确,在分配的时候需要将所有的数据结构都存在我们管理的内存池中
//比如struct mp_pool_s *pool这个内存池本身也需要受我们管理
struct mp_pool_s *mp_create_pool(size_t size) {
struct mp_pool_s *p;
int ret = posix_memalign((void **)&p, MP_ALIGNMENT, size + sizeof(struct mp_pool_s) + sizeof(struct mp_node_s));
//posix_memalign 分配足够的内存,size(page_size:4096) 加上内存池本身和小块结构本身
if (ret) {
return NULL;
}
p->max = (size < MP_MAX_ALLOC_FROM_POOL) ? size : MP_MAX_ALLOC_FROM_POOL; //内存池单块大小受我们定义的pagesize限制
p->current = p->head;// 初始化时还有没分配数内存,所以head就是current
p->large = NULL;// 还没有分配large块
p->head->last = (unsigned char *)p + sizeof(struct mp_pool_s) + sizeof(struct mp_node_s); //最后一个分配的小块
p->head->end = p->head->last + size;//这次分配的页面的末尾
p->head->failed = 0;
return p;
}
void mp_destory_pool(struct mp_pool_s *pool) { //释放内存池
struct mp_node_s *h, *n;
struct mp_large_s *l;
for (l = pool->large; l; l = l->next) { //循环释放分配的large块
if (l->alloc) {
free(l->alloc);
}
}
h = pool->head->next;
while (h) { //循环释放分配的页面
n = h->next;
free(h);
h = n;
}
free(pool);//释放内存池本身
}
void mp_reset_pool(struct mp_pool_s *pool) { //重置内存池
struct mp_node_s *h;
struct mp_large_s *l;
for (l = pool->large; l; l = l->next) {//重置的时候需要释放大块内存
if (l->alloc) {
free(l->alloc);
}
}
pool->large = NULL;
for (h = pool->head; h; h = h->next) {// 但针对页面只需要将页面内的小块内存指针退回起始位置就可以,不需要将已经分配的页面还给操作系统
h->last = (unsigned char *)h + sizeof(struct mp_node_s);
}
}
static void *mp_alloc_block(struct mp_pool_s *pool, size_t size) { // 开辟新的页面并分配内存
unsigned char *m;
struct mp_node_s *h = pool->head; //先拿到当前页面的head指针
size_t psize = (size_t)(h->end - (unsigned char *)h); //拿到页面总大小
int ret = posix_memalign((void **)&m, MP_ALIGNMENT, psize);//分配新的页面
if (ret) return NULL;
struct mp_node_s *p, *new_node, *current;
new_node = (struct mp_node_s*)m; //初始化新的页面
new_node->end = m + psize;
new_node->next = NULL;
new_node->failed = 0;
m += sizeof(struct mp_node_s);
m = mp_align_ptr(m, MP_ALIGNMENT);
new_node->last = m + size; //把需要的内存大小从新分配的页面上取走
current = pool->current; //关键点:旨在减少页面末尾的内存碎片,nginx使用的方式
for (p = current; p->next; p = p->next) { //每一个页面都有一个自己的failed关键字,用于表明其页面末尾提供给新需求时失败的次数,失败次数大于4就将内存池的current指针换到下一个页面
// 失败次数少于4那么就不变内存池的current指针,这样在下一个需求到来时还是从当前分配失败的(页面末尾内存不够用)这一页面末尾开始查找,有利于减少末尾内存碎片,4这个值的得出应该是nginx的实验
if (p->failed++ > 4) {
current = p->next;
}
}
p->next = new_node;
pool->current = current ? current : new_node; //这里可以看出,如果刚好所有之前创建的页面都失败大于4次,那么将当前内存池首选页面变为刚新建的页面即可
return m;
}
static void *mp_alloc_large(struct mp_pool_s *pool, size_t size) { //分配大块空间
void *p = malloc(size);
if (p == NULL) return NULL;
size_t n = 0;
struct mp_large_s *large;
for (large = pool->large; large; large = large->next) {
if (large->alloc == NULL) {
large->alloc = p;
return p;
}
if (n ++ > 3) break;
}
large = mp_alloc(pool, sizeof(struct mp_large_s));// large这个数据结构本身也需要交由内存池来管理,分析一下在mp_alloc中因为这个数据结构很小会存储在页面上,故不会产生无限循环
if (large == NULL) {
free(p);
return NULL;
}
large->alloc = p;
large->next = pool->large;
pool->large = large; //large链表的头插法,很简单
return p;
}
void *mp_memalign(struct mp_pool_s *pool, size_t size, size_t alignment) {
void *p;
int ret = posix_memalign(&p, alignment, size);
if (ret) {
return NULL;
}
struct mp_large_s *large = mp_alloc(pool, sizeof(struct mp_large_s));
if (large == NULL) {
free(p);
return NULL;
}
large->alloc = p;
large->next = pool->large;
pool->large = large;
return p;
}
void *mp_alloc(struct mp_pool_s *pool, size_t size) { //内存分配的入口函数,分别处理大块内存和小块内存需求,小块内存需求在页面末尾空间不足时进入新建页面并分配函数中,否则直接分配在当前页面就可以
unsigned char *m;
struct mp_node_s *p;
if (size <= pool->max) {
p = pool->current;
do {
m = mp_align_ptr(p->last, MP_ALIGNMENT);
if ((size_t)(p->end - m) >= size) {
p->last = m + size;
return m;
}
p = p->next;
} while (p); //循环在current及其后的一个或多个页面上查找符合要求的末尾空间,存在的话就return
return mp_alloc_block(pool, size); //进到这里说明不存在符合要求空间,那就新建页面然后分配并对页面failed值计数和调整current页面
}
return mp_alloc_large(pool, size); //大块内存情况
}
void *mp_nalloc(struct mp_pool_s *pool, size_t size) {
unsigned char *m;
struct mp_node_s *p;
if (size <= pool->max) {
p = pool->current;
do {
m = p->last;
if ((size_t)(p->end - m) >= size) {
p->last = m+size;
return m;
}
p = p->next;
} while (p);
return mp_alloc_block(pool, size);
}
return mp_alloc_large(pool, size);
}
void *mp_calloc(struct mp_pool_s *pool, size_t size) {
void *p = mp_alloc(pool, size);
if (p) {
memset(p, 0, size);
}
return p;
}
void mp_free(struct mp_pool_s *pool, void *p) {
struct mp_large_s *l;
for (l = pool->large; l; l = l->next) {
if (p == l->alloc) {
free(l->alloc);
l->alloc = NULL;
return ;
}
}
}
int main(int argc, char *argv[]) {
int size = 1 << 12;
struct mp_pool_s *p = mp_create_pool(size);
int i = 0;
for (i = 0;i < 10;i ++) {
void *mp = mp_alloc(p, 512);
// mp_free(mp);
}
//printf("mp_create_pool: %ld\n", p->max);
printf("mp_align(123, 32): %d, mp_align(17, 32): %d\n", mp_align(24, 32), mp_align(17, 32));
//printf("mp_align_ptr(p->current, 32): %lx, p->current: %lx, mp_align(p->large, 32): %lx, p->large: %lx\n", mp_align_ptr(p->current, 32), p->current, mp_align_ptr(p->large, 32), p->large);
int j = 0;
for (i = 0;i < 5;i ++) {
char *pp = mp_calloc(p, 32);
for (j = 0;j < 32;j ++) {
if (pp[j]) {
printf("calloc wrong\n");
}
printf("calloc success\n");
}
}
//printf("mp_reset_pool\n");
for (i = 0;i < 5;i ++) {
void *l = mp_alloc(p, 8192);
mp_free(p, l);
}
mp_reset_pool(p);
//printf("mp_destory_pool\n");
for (i = 0;i < 58;i ++) {
mp_alloc(p, 256);
}
mp_destory_pool(p);
return 0;
}